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This article considers a posteriori error estimation and anisotropic mesh refinement for
three-dimensional laminar aerodynamic flow simulations. The optimal order symmetric
interior penalty discontinuous Galerkin discretization which has previously been devel-
oped for the compressible Navier-Stokes equations in two dimensions is extended to three
dimensions. Symmetry boundary conditions are given which allow to discretize and com-
pute symmetric flows on the half model resulting in exactly the same flow solutions as if
computed on the full model. Using duality arguments, an error estimation is derived for
estimating the discretization error with respect to the aerodynamic force coefficients. Fur-
thermore, residual-based indicators as well as adjoint-based indicators for goal-oriented
refinement are derived. These refinement indicators are combined with anisotropy indica-
tors which are particularly suited to the discontinuous Galerkin (DG) discretization. Two

different approaches based on either a heuristic criterion or an anisotropic extension of
the adjoint-based error estimation are presented. The performance of the proposed discret-
ization, error estimation and adaptive mesh refinement algorithms is demonstrated for 3d
aerodynamic flows.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we extend a symmetric interior penalty discontinuous Galerkin (SIPG) method previously developed for the
2d compressible Navier-Stokes equations in [18] to 3d laminar flows, see Sections 2 and 3 for the governing equations and
the discretization. This discretization is consistent, adjoint consistent [1,12,13] and of optimal order [18]. In particular, it uses
an adjoint consistent discretization of boundary conditions, an optimal order interior penalty term and is combined with an
adjoint consistent discretization of the aerodynamic force coefficients.

The discretization is augmented with an accurate symmetry boundary condition. Here, by “accurate” we mean that the
symmetry boundary condition allows to discretize and compute symmetric flows on the half (computational) model result-
ing in exactly the same flow solutions as if computed on the full model. To this end, mirrored state variables and gradients of
the state variables are given which allow to devise an accurate symmetry boundary for the considered DG discretization of
arbitrary high order.

Important quantities in aerodynamic flow simulations are the aerodynamic force coefficients like the drag, lift and mo-
ment coefficients. In addition to the exact approximation of these quantities it is of increasing importance, in particular in
the field of uncertainty quantification, to estimate the error in the computed quantities. By employing a duality argument
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error estimates can be derived for estimating the error measured in terms of the 3d aerodynamic force coefficients, see Sec-
tion 5. The error estimate (Type I error bound) includes local residuals multiplied by the solution to an adjoint problem re-
lated to the force coefficient. The error estimate can be decomposed into a sum of local adjoint-based indicators, see Section
7, which can be employed to drive a goal-oriented adaptive mesh refinement algorithm specifically tailored to the accurate
and efficient approximation of the aerodynamic force coefficient. We note that the error estimates and adjoint-based indi-
cators derived in this work represent an extension of the error estimates developed for the SIPG discretization of the 2d com-
pressible Navier-Stokes equations in [17] to the optimal order SIPG discretization of the 3d compressible Navier-Stokes
equations considered here.

Provided the adjoint solution related to an arbitrary target functional is sufficiently smooth the corresponding error rep-
resentation can be bounded from above by an error estimate (Type II error bound) which includes the primal residuals intro-
duced in Section 4 but is independent of the adjoint solution. By localizing this error estimate so-called residual-based
indicators can be derived, see Section 6. Mesh refinement based on these indicators leads to meshes which resolve all flow
features irrespective of any specific target quantity. We note that in [17,14] these indicators have been derived for SIPG dis-
cretizations of the 2d compressible Navier-Stokes equations. In the current work we derive the residual-based indicators
associated with the SIPG discretization of the 3d compressible Navier-Stokes equations, including symmetry boundary
conditions.

Flow phenomena may exhibit a strong directional behavior. In particular, in boundary layers or interior layers like shocks
the flow variables change rapidly in the direction orthogonal to the layer, whereas the change parallel to the layer is much
smaller. Highly stretched elements should be used for an optimal resolution of these features.

Considerable work has been devoted to anisotropic refinement for linear finite elements on simplex meshes where the
information of an approximated Hessian-based mesh metric field is used within remeshing algorithms, see for example
the work by Formaggia et al. [9], Frey and Alauzet [10], Huang [20] or Sahni et al. [29]. Here, the metric field approximates
the interpolation error of the solution and is used to determine the local mesh density as well as the local element rotation
and stretching in a remeshing algorithm.

Whereas the use of an interpolation based error estimate is easily applied to any kind of equation it might yield non-opti-
mal refined meshes w.r.t. the efficient approximation of a given target functional. Venditti and Darmofal [32] have combined
the directional information of the metric approach with a scaling based on adjoint-based error indicators, resulting in dual
weighted metrics. Similar techniques have been applied frequently, e.g. by Jones et al. [21]. Relying on the Hessian to deter-
mine the basic metric field this technique is not readily extendible to discretizations of higher than second order. Further-
more, the metric-based approach can easily be combined with different error estimates, see the work of Bourgault et al. [5]
based on a posteriori error estimates or the work of Loseille et al. [27] based on a combination of the metric approach with an
a priori goal-oriented error estimate. The latter three references present results for shock-dominated flows governed by the
Euler equations. However, as the metric-based approach provides information for a remeshing process it cannot be applied
to local element subdivision algorithms, thus most of the work in this field is of little practical use for our specific application.

One common approach to anisotropy detection in the context of element subdivision is to use several trial refinements
which include anisotropic cases that split only part of the edges of an element to form child elements with modified aspect
ratio. From these discrete choices the case which reduces the error most effectively can be selected, this has been proposed
by Sun and Wheeler [30] as well as Kurtz and Demkowicz [25], for example. However, such approaches seem unreasonably
expensive, especially if they require solutions on globally refined meshes. Solving only local problems and including goal-
oriented refinement has been considered by Houston et al. [19].

In this work we concentrate on anisotropy indicators which come computationally almost for free, i.e. no additional aux-
iliary problems shall be solved for obtaining anisotropic refinement information. Furthermore, these indicators shall be
applicable to higher order DG discretizations. In [26] anisotropic indicators have been developed for the anisotropic mesh
refinement of 2d quadrilateral meshes. Being based on inter-element jumps these indicators are particularly suited for dis-
continuous Galerkin flow solutions. In Section 8, we extend the anisotropic indicators to be used in an anisotropic three-
dimensional mesh refinement algorithm. In particular, the anisotropic indicators are combined with the residual-based as
well as the adjoint-based indicators. Furthermore, in addition to this heuristic technique an anisotropic adjoint-based error
estimate based on the recent work of Richter [28] is presented. This estimate decomposes the element-wise isotropic ad-
joint-based error estimator into directional contributions which accumulate to the isotropic one.

The main goal of this work is to extend the discretization methods, error estimates and adaptive isotropic and anisotropic
mesh refinement algorithms, which have been developed for 2d laminar flows over the last several years [13,14,17,26] to
three dimensions and to demonstrate that they can be successfully applied to 3d aerodynamic flow simulations. To this
end, in Section 9 we apply the proposed algorithms to aerodynamic test cases which have also been considered in the Euro-
pean project ADIGMA [24]. In particular, we consider two laminar three-dimensional aerodynamic flows of different com-
plexity: (a) a laminar flow around a curved and streamlined body and (b) a laminar flow around a delta wing.

The authors are aware of only one work on goal-oriented (adjoint-based) mesh refinement applied to discontinuous
Galerkin discretizations of 3d aerodynamic flows. In the publications [7,8] which both are based on Fidkowski [6] the ad-
joint-based mesh refinement uses a cut-cell approach and is applied to the 3d compressible Euler equations with isotropic
refinement. In contrast to that the current work is based on boundary-aligned meshes, provides a posteriori error estimates in
the computed force coefficients, derives residual-based and adjoint-based mesh refinement indicators and combines them
with anisotropic mesh refinement for the 3d compressible Navier-Stokes equations.
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2. The 3d compressible Navier-Stokes equations

We consider the three-dimensional steady-state compressible Navier-Stokes equations
V- (Fu) - F’(u,Vu))=0 in Q (1)
subject to various boundary conditions including no-slip wall boundary conditions with vanishing velocity v = (2,15, 15)" =0

at isothermal walls I'js, where T = T4, Or at adiabatic walls I",4;; where n - VT = 0. The vector of conservative variables u is
given by u = (p, pvy, pva, pv3, pE)" and the convective fluxes F<(u) = (f{(u),f;(u),f3(u))" by

P J%) pU3

pv}+p P2V PU3 V1

fiuw)y=| priv, |, f5u)=|pvi+p|, and f5u)=| pvsv;
pv1v3 prav3 pv3+p

pHv, pHv, pHvs

where p, p and E denote the density, pressure and specific total energy, respectively. Additionally, H is the total enthalpy
given by

H:E+B:e+1v2+3, )
p 2 p
where e is the specific static internal energy, and the pressure is determined by the equation of state of an ideal gas
p=(y-1)pe, 3)

where y = ¢p/c, is the ratio of specific heat capacities at constant pressure, ¢, and constant volume, c,. Furthermore, the vis-
cous fluxes F*(u, Vu) = (f] (u, Vu),f; (u, Vu), f5 (u, Vu))" are defined by

f(u,Vu) = Toi . i=1,2,3.

TV + ICTXi
Here T denotes the temperature given by e = ¢,T, K is the thermal conductivity coefficient and z is the viscous stress tensor
defined by

T= ,u(Vv + (V)" — %(v -v)1>, (4)

where p is the dynamic viscosity coefficient. For the purposes of discretization, we rewrite the compressible Navier-Stokes
equations (1) in the following (equivalent) form:

0 (o ou
o (- Gy 52

where G;(u) = of; (u, Vu)/duy, for i,j=1,2,3, are the homogeneity matrices with f/(u, Vu) = G;(u)ou/ax;, i=1,2,3.

):OinQ (5)

3. The SIPG discretization of the 3d compressible Navier-Stokes equations

In this section we extend the consistent and adjoint-consistent interior penalty discontinuous Galerkin discretization as
derived for the two-dimensional compressible Navier-Stokes equations in [13,18] to three dimensions.

First, we begin by introducing some notation. We assume that €2 can be subdivided into shape-regular meshes 7, = {x}
consisting of hexahedral elements k. Here, h denotes the piecewise constant mesh function defined by h—, = h,. = diam(x)
for all k € 7. Let us assume that each k € 7}, is an image of a fixed reference element £, that is, k¥ = (k) for all k € T},
where « is the open unit cube in R?. Furthermore the mapping o, of the reference element « to the element x in real space
is assumed to be bijective and smooth, with the eigenvalues of its Jacobian matrix being bounded from below and above. In
the simplest case this mapping is tri-linear. In order to achieve a good approximation of strongly curved geometries on
coarse meshes mappings can be based on polynomials of higher degree instead of linear functions, see [23] for more details
about curved elements. On the reference element kK we define spaces of tensor product polynomials of degree p > 0 as
follows:

Qp(K) =span{X*:0< o; <p, i =1,2,3}, (6)

where a denotes a multi-index and X* = ]'[?Zlfcfi. Finally, we introduce the finite element space V/ consisting of discontinu-
ous vector-valued tensor product polynomial functions of degree p > 0, defined by
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Vi = {Vi € [L(Q)) : Vil 0 0 € [Qp(R)), 1 € Ty} (7)

Suppose that v|, € [H'(x)]™, m > 1, for each k € T},. We now define average and jump operators for vector- and matrix-
valued functions. To this end, let x* and k~ be two adjacent elements of 7, and X be an arbitrary point on the interior face
f=0xk"nox c I'z. Moreover, let v and 1 be vector- and matrix-valued functions, respectively, that are smooth inside each
element k*. By v* := v|,,. and ¢ := 7|,,. We denote the traces of, respectively, v and z on f taken from within the interior of
K*, respectively. Then, we define the averages at x € f by {v}=(v"+v)/2 and {z} = (z" + £7)/2. Similarly, the jump at x € f is
given by [v] = v* @ n,- + Vv~ @ n,-.On a boundary face f ¢ I', we set {v} = v, {z} = 7 and [v] = v ® n. For matrices g, € R™",
m,n > 1, we use the standard notation ¢:71 = Sy Lotk additionally, for vectors v € R™, w € R", the matrix
vowc R™" is defined by (V® W), = yw,.

The discontinuous Galerkin discretization of the 3d compressible Navier-Stokes equations (1) is given by: Find u, € V}
such that

N, v) = —/]-‘f(uh) : Vpvdx + Z H(u;,u,,n") ~v*ds+/}‘”(uh,vhuh) : Vapvdx
Q Q

KETy ok\I"
— [ (7, Vaun)) :Mdsf/ (G (1) Vv :Mds+/ a(wy,) : [v]ds
Iz I'z Iz
+Nr(uh,V)+Npsym(llh,V)=0 (8)

for all v in Vf. Here, the numerical flux (-, -,-) may be chosen to be any two-point monotone Lipschitz function which is
consistent, i.e. H(v,v,n) = F°(v) - n, and conservative, i.e. H(v,w,n) = —H(w, v, —n). The penalization term is given by

X 2
() = 9%(w) = G (Gl ) 9)
where hyrepresents the element dimension orthogonal to the face f of the elements x" and x~ adjacent to f. Furthermore, Cjp
is a positive constant, which, for reasons of stability, must be chosen sufficiently large. Finally, the boundary terms included

in N'r(u,,v) are given by

Np(uh,v):/Hp(u;7up(u;)7n*)‘v*ds+/ép(u;) :vends
r r

—/n~fﬁ(uhﬁvhu,§)v+ds—/ (Gr(uf)Vpvy) : (uf —ur(uy)) @ nds, (10)
r r
where the penalization term at the boundary is given by
. p2
dr(up) = 6P (uy) = CIPh—fGr(“h)(llh —up(uy)) ®n. (1)
Here, the viscous boundary flux F}. and the corresponding homogeneity tensor G are defined by
Fr(uy, Vug) = FP(ur(uy), Vuy) = Gr(u,) Vu, = G(ur(ug)) Vuy,. (12)

Furthermore, on adiabatic boundaries I',q4is C I'w, F} and G are modified such that n- VT = 0. Finally, we define
Hr(uy,ur(uy),n) =n- 7 () =n- 7 (ur(u;)), (13)

where the boundary function uy(-) is given by u(w) = (w;,0,0,0,ws)" on I",qi,, and by up(w) = (w4,0,0,0,w;¢,Ta) " 0n g,
see [18] for the treatment of other boundary conditions. Finally, we note that the boundary function u,(-) is consistent, i.e.
on all boundary parts, u,(-) is chosen such that the exact solution u to (1) satisfies u,(u) = u. As a consequence also §(-) as
defined in (11) is consistent. In fact, the exact solution u to (1) satisfies ¢,-(u) = 0.

A substantial number of 3d aerodynamic flows can be treated as symmetric if the side slip angle vanishes. Symmetry
boundary conditions should be defined such that the discretization on the half domain resembles the discretization on
the full domain. This can be achieved if the boundary conditions are derived considering the discrete problem, not the con-
tinuous one.

To this end, we replace u; on the symmetry boundary I'sym by the boundary function ur (u;) defined by

1 0 0 0 0
0 1-2n2 -2mn, -2mn

ur(u)=|0 -2mn, 1-2n% -2mn;
0 —-2mns —2mns 1-—2n?
0 0 0 0

u on I'gyp. (14)

- O © O

Here, ur(u) is chosen in a way to ensure that scalar physical quantities are symmetric in a classical sense, i.e. pr = p* and
(pE)r = (pE)*, whereas vector-valued physical quantities like the velocity are symmetrical in a vectorial sense, i.e.
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vr-t=v"-tfort-n=0,and vy -n=-v"-n, where n = (n,ny,ns)" is the unit outward normal vector on Iy, i.e. the normal
component of vector-valued quantities is antisymmetric if measured with the same normal vector n.

In order to obtain the gradient Vu, we have to take into account the linear transformation of the state variables (14) as
well as the fact that the gradient of a scalar quantity is a vector-valued quantity that has to be treated just like the velocity
vector. Combining these two ingredients we arrive at the following expression for (Vu), (u;) which replaces Vu;:

(Vu)py(up) = 6umw}(uh)6xnug1(6n, — 2n,ny). (15)

This gradient could also be computed by evaluating the local derivative on a ghost cell with state variables created through
the symmetry condition above. However, using (15) we obtain the same result without the necessity to actually construct a
ghost cell.

The discretization on the symmetry boundary is given by

(F* (. Vo) + 7 (). (V) (7)) : v* @ nds

N =

Ny (Wh, V) = H(u;, ur(u)),n*)-vids — /

T'sym

/Fsym

where the penalization term is given by

T'sym

(G"(u)Vypv?) : (0} —ur(uf)) ®nds+/ Orym(Wy) : vV @ nds,

Tsym

N —

2

B (1) = 3, () = G5 (Gl + Gl (1)) (wy — () & . (16)

=I'sym

4. The primal residual form

Using integration by parts in (8) we obtain the primal residual form (see Hartmann and Houston [18]) given by: find
u;, € V such that

R(uy, v = / R(up) - vdx + Z / r(u,) - v+ p(uy) : Vv*ds+/ rr(w) - v+ pr(uy) : Vvids
JQ KeTy oK\ - r -
+ / Py (Wh) - VT + pr, (W) : VVids =0 Vv eV, 17)
l-sym -
where the primal element, interior face and boundary residuals are given by

R(up) = -V -F(uy) + V- F’(up,, Vpuy) in K,k € T,

r(uy) = n- F(u;) — H(u,,uw,,n') _%[[}-v(uhvvhuh)ﬂ —n-j(wy),

p(uy) = 2(G(uh)[[ W)T ondk\T, Kk €Ty,

rr(uy) =n- (F(u)) — Fo(u)) — Foul, Vub) + FL(u), V) —n- §r(ay), (18)
pr(w) = (Gf () : (u; —ur(uf))@n)  onT,
Iry, (W) =n-F°(u)) — H(u), ur(u)),n") —%n~ (F(wf, Vu)) — FP(u), (Vu) . (u;)) = - dry, (),

Pram (W) ( T(wh) : (wy —ur(w) ©n) on ym.
As shown in [18] the exact solution u to (1) satisfies
RW) =0, r)=0 pu)=0, ru=0, pr(u=0.
Furthermore, the exact solution u to (1) satisfies
l‘l‘sym (u) = 07 Blvsym (u) = O
Thereby, the discretization (8) is consistent, i.e. the exact solution u € V satisfies the following equation:

Nu,v)=0 ¥YveV, (19)

where V is some suitably chosen function space including the exact solution u € V to the primal problem (1) and satisfying
V, C 'V, see [1,13] for the choice of V in the case of discontinuous Galerkin methods.
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5. A posteriori error estimation

We are interested in estimating the error in following aerodynamic force coefficients: the total drag and lift coefficients
which are given by

1

—— [ (pn—1n)-yds. (20)
qooA I'w

Here, q,, =1yp M2 =1y ¥slp _ =1p_|[v.[?, where M denotes the Mach number, ¢ the speed of sound defined by ¢ =y p/p

2
and A denotes a reference ;?ea. The subscripts oo indicate free-stream quantities. Finally, in case of vanishing sideslip and roll
angles g and v, y is given by

Wy = (cos(ar),0,sin())"  or y; = (—sin(e), 0, cos(a))"

for the drag and lift coefficient, respectively, where « is the angle of attack. The side force coefficient vanishes for symmetric
bodies with zero sideslip angle. According to the analysis in [13], see also [18], we modify the force coefficients in (20) as
follows

Juw = [ -z yds + [ artun) sz onds. 1)

qooA I'w Ty

Eq. (21) is a consistent modification of the force coefficient in (20) as §,-(u) = 0 holds for the analytical solution u.
Moreover, this modification ensures that the discretization in (8) in combination with the target functional (21) is adjoint
consistent [13,18].
Given the discretization (8) and the target functional (21) the derivation of error estimates for J(-) follows the general ap-
proach of duality-based a posteriori error estimates for target functionals, see e.g. [4,11,16] among many others. Following
this approach but omitting details for brevity we arrive at following error representation

Ju) —J(up) = —N(uy,z) = R(uy, z), (22)

where z is the exact but in general unknown solution to an adjoint problem connected to the target functional J(-). Replacing
z by an approximate solution z, to a linearized adjoint problem gives rise to following approximate error representation

J) = J(up) ~ —R(uy, Zp), (23)
where Z, € V, is the solution to following discrete adjoint problem, see e.g. [17] for more details: Find z,, € V,, such that
N[ (Wi, Zy) =] [up)(Wy) YW € Vi, (24)

which is usually computed on the same mesh 7 used for u,, but with a higher degree polynomial. We note, that due to
replacing the exact adjoint solution z in (22) by the numerical approximation z, the resulting formula (23) represents an
approximation only of the true error. However, in a series of publications, e.g. [16,17,32] among others, it has been demon-
strated that this approximation is close to the true error in the target functional. We will demonstrate in Section 9 that this
holds true also for the 3d aerodynamic flows considered in this work.

6. Residual-based indicators
Let u and u;, denote the solutions to (1) and (8), respectively. Recalling from (8) that N (u;,vy,) = 0 holds for any discrete
function v;, € V} the error representation in (22) can be rewritten as follows:
Ju) —J(uy) = —N(uy,z — vp) = R(Up, Z — V), (25)
for any v, € V. In particular, we can choose v := P,z € V} in (25), i.e.
J) = J(w) = R(uy,z - Pyz), (26)

where P,z denotes an appropriate interpolation/projection of z into the discrete function space Vf with following properties,
see e.g. [2]: Suppose z—, in [H*"'()]%, s,c = 0, for k € T}. Then

K 17
Z = Phz[yyme) < Chfc 2 e (x) (27)
where t,. = min(s,,p), K € T,. Then, by the trace theorem, we have

tie+1/2
12 = Puz] 2 ) < CHE 212l 28)
te—1/2
‘Z — PhZ‘Hl(ﬁK) < ChK / |Z‘Ht’*”1(K)'

Using (17) we rewrite (26) as follows
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Jw) ~Jw) = [ Raw)- 2= Pyix+ 3 [ ) 2P+ plw) s iz Piz)'ds
Q KeT, 7oK\l
+ / rr(w) (z—Ppz)" + pr(uy) : V(z— Pyz)"ds
Jr
+ / Irym (W) - (Z— Phz)” + Proym(Uy) : V(z - Pyz)*ds, (29)
rsym

where the primal element residuals R(uy,), the interior face residuals r(u,) and p(uy), the boundary residuals r(u,) and
pr(uy), and the symmetry boundary residuals rr,, (u;) and pr,,, (u,) are as given in (18).

Assuming z|,. € [H*"'(x))°, k € T}, and applying Cauchy-Schwarz inequality and the approximation estimates (27) and
(28) in (29) we obtain

1/2
J(w) —J(uy)| < (Z () ) ; (30)

KeTh

S

where 7™ are given by

75 = IR+ 2 e (a0) o + B2 pore () 5 (31)

with t,. = min(s,p), K € T,. Here, we use the short notation ry, =r on 9k\I', Ty = on I', and Ty, = Ir,,, on [sym, i.e.

2 2 2 2
[Tore (W) 15 = (@) [+ I0r (W) 17+ [Ty (W)17y,,

and analogously for p,:

o ()5 = 2 51 + 2r W7 + [|Prym (W)IF,,..

We note that s, Kk € T}, depends on the smoothness of the adjoint solution z. However, in practice we cannot expect z to be
better than z € [H'(£2)]°. We choose s, = 0, and thus t,. = 0, k € T}, in (31) and obtain the following residual-based indicators:

0 = RO + Y2 1T () [+ B 0o (W) (32)

Note, that (30) and (32) is the extension of Corollary 4.5 in [17] for the adjoint inconsistent discretization of the 2d compress-
ible Navier-Stokes equations given in [17] to the adjoint consistent discretization, see [18], of the 3d compressible Navier—
Stokes considered in this article.

7. Adjoint-based indicators

The approximate error representation (23) can be rewritten as follows

Ju) —Jwy) = R(up, 24) = Y x. (33)

KeTy

Here, the indicators #j,, K € T4, are the so-called adjoint-based indicators given by

ﬁ,C:/R(uh)-ihdx+/ r(un)'ih*+p(uh):vhi;ds+/ rr(up) -Z + prw,) : VZ; ds
K OKk\I" - -

KknI'
+ / Py (W) - + pro (Uy) - V2; s, (34)
KNI sym

where the primal element residuals R(uy), the interior face residuals r(uy) and p(uy), the boundary residuals rr(u,) and
pr(upy) and the symmetry boundary residuals rr,,, (u,) and pr,,, (u;) are as given in (18).

These local error indicators include the local primal residuals weighted with the discrete adjoint solution and are also
denoted as dual-weighted-residual indicators (DWR indicators), see e.g. [4]. These local indicators can be used to drive an
adaptive refinement (and coarsening) algorithm specifically tailored to the accurate and efficient approximation of the target
quantity J(u). For example, suppose that the aim of the computation is to compute J(-) such that the error |J(u) — J(uy)| is less
than some user-defined tolerance TOL, i.e. |[J(u) — J(u,)| < TOL, then in practice we may enforce the stopping criterion
[ ke, Tl < TOL. If this condition is not satisfied on the current finite element mesh 7, then the local indicators 7, are em-
ployed as local error indicators to guide mesh refinement and coarsening. Based on the absolute values of the local indicators
|17,c] we select a fixed fraction of all elements for refinement and coarsening: typically 20% of the largest values for refinement
and 10% of the smallest values for coarsening.
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8. Anisotropic mesh refinement

The mesh refinement indicators presented in Sections 6 and 7 provide only the information which elements should be
refined in order to improve the accuracy of the resulting solution. They do not include any directional information, thus
an extension is required for anisotropic mesh refinement. Our first approach is based on an additional anisotropic indicator
used to decide whether splitting just a subset of an element’s edges and thus modifying the child elements’ aspect ratios is
preferable over splitting all edges. In the latter case the refinement is isotropic in the sense that child elements inherit the
aspect ratio of the mother element. The heuristic jump indicator considered here was introduced in [26] for two-dimensional
flows. For completeness, we recall the most relevant details and extend them to three-dimensional problems. The heuristic
anisotropy detection of this first approach can be combined with an adjoint-based error estimator for goal-oriented refine-
ment. Instead of using two separate indicators our second approach is based on an anisotropic extension of the a posteriori
error estimate itself.

8.1. Jump indicator

One of the most characteristic features of DG methods is the possible discontinuity of its discrete solutions. In fact, a dis-
crete solution may have jumps across the faces between neighboring elements, whereas it is smooth inside each element.
These jumps allow some flexibility in approximating the local properties of the solution. In smooth parts of the solution
these jumps tend to zero with successive mesh refinement as the solution is approximated with less error. Based on this
observation it seems justified to assume that a large jump indicates a larger error as compared to a smaller jump. In view
of an anisotropic evaluation a large jump over a face indicates that the mesh size perpendicular to this face is too coarse
to sufficiently resolve the solution. In this sense inter-element jumps can be used to derive an anisotropic indicator that uses
information which is specific to the numerical method used to solve the problem. Near discontinuities of the solution, like
shocks, the jumps might not tend to zero under mesh refinement. However, in this case a large jump detects this disconti-
nuity and suggests a refinement improving the resolution orthogonal to this feature, which is the correct behavior. Thus, the
inter-element jumps can be used as an indicator in both smooth and non-smooth regions of the solution.

In order to obtain directional information, the average jump K; of a function ¢ over the two opposite faces f,f, j=1,2, per-
pendicular to one coordinate direction i on the reference element can be evaluated as

o Sl
 Xmeas(f)’

where [¢] = ¢* — ¢~ denotes the jump of a scalar function ¢, the summations run over j=1,2, and [ -ds indicates a surface
integral in three dimensions. Eq. (35) provides three distinct values for each element. Let K,,, denote the maximum value of K;,
i=1,2,3. We want to refine along each direction [ in which the average jump is not considerably smaller than K. In order to
quantify considerably, we introduce a threshold factor 6 > 1. Thus we refine along each direction [ for which

0K, > Ky, 1=1,2,3. (36)

i=1,2,3, (35)

Depending on the relative sizes of the average jumps in the individual directions, several cases may occur, see Fig. 1. If the
jump is particularly large in one direction, the element will be refined only along that direction. If the jump in one direction
is particularly small, whereas the other two values are of similar size, the element will be refined along the other two direc-
tions. If all the three average jumps have similar size we fall back to isotropic refinement.

If the solution function is vector-valued, as is the case for the flow equations, the jump of a scalar function ¢ in Eq. (35)
has to be replaced by an appropriate norm of the vector of jumps, for example the I,-norm.

The empirical threshold factor 0 has to be chosen large enough to ensure that only those elements are flagged for aniso-
tropic refinement which are located near strong anisotropic features, otherwise the error would not be reduced sufficiently.
On the other hand, however, a smaller value of 6 allows more elements to be treated anisotropically, thereby leading to a
reduced number of total elements. Numerical experiments showed that 0 = 5.0 is a good choice for a range of test problems.

8.2. Anisotropic adjoint-based error indicator

In the context of mesh adaptation via local element subdivision Richter [28] recently presented an anisotropic adjoint-
based a posteriori error estimate. The basic idea is to replace the isotropic (polynomial) enrichment of the space in which
the adjoint solution z, is computed by a space which is only enriched in one direction. This provides one error estimate
for each of the coordinate directions on the reference hexahedron. This estimate indicates the part of the local error which
can be reduced by refining the element along the same direction (or by increasing the polynomial degree of the discrete an-
satz space in that direction). Repeating this error estimation with different enrichment directions yields three distinct indi-
cators for each element. The selection of refinement is then applied directly to all those indicators at once, selecting from the
refinement choices given by each uni-axial anisotropic refinement of each element. Isotropic refinement is only created if the
three directions on a given element have independently been selected for refinement.
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Fig. 1. Possible anisotropic and isotropic refinement cases on the 3d reference element.

In analogy to (6) and (7) let us denote the spaces of anisotropic tensor product polynomials of degrees p,q,r > 0 on the
reference element by

Qpar(®) =span{X*: 0 < oy <p,0<0or <q,0< 03 <1}, (37)

and the finite element space of vector-valued anisotropic tensor product polynomial functions of degrees p,q,r > 0 by

VRt = (Vi € [L2(Q) : Vil © O € [Qpar ()], K € Th}. (38)

Note that Q,,,(k) = Q,(k) and V/P? = V. Richter [28] considers continuous finite elements on patchwise refined meshes,
where the adjoint solution is computed in the continuous equivalent of V¥ and then reconstructed to VZ??, VP?P? and V2?2
in turn. Due to the continuous nature this reconstruction is little more than a reinterpretation of existing degrees of freedom
on a super-element. In the discontinuous and unstructured context considered here we prefer to obtain an isotropically en-
riched solution in V7' ! either through direct computation or some reconstruction technique. This solution could then be L-
projected to VP'PP YPPTP and VPPP in turn to simulate the directional reconstruction. However, the three anisotropic er-
ror indicators obtained that way for a given element do in general not sum up to the isotropic one. If a certain component of
the error does only show up in a combined enrichment of the space and thus this error component can only be reduced by
isotropic refinement this information will be lost using a simple projection technique. We believe that the reproduction of
the isotropic estimate for isotropic cases is an important property and thus suggest to include those effects through the fol-
lowing reasoning.

The adjoint-based error estimate obtained for z"' in Vi*' can also be obtained by considering z,"' — z; with any z} in V?
due to Galerkin orthogonality. Furthermore, zﬁ“ — b can be represented in a space spanned by hierarchic and orthogonal
polynomials, e.g. the tensor product space of Legendre polynomials. If we choose z} as the L, projection of Z/*' to V? we
can reinterpret the L, projection from V2! to VP*'?? as a modification of the coefficients in an unchanged space, in particular
the projection corresponds to setting all coefficients of zﬁ“ to zero except those for which the basis function is of degree p + 1
in the X, direction and of smaller degree in the other two directions; analogous observations are true for the remaining direc-
tions. Summing those three projections up and comparing to the full function we lost those coefficients for which the basis
function is of degree p + 1 in more than one coordinate direction. We suggest to split those coefficients and add them in equal
parts to the projections in the involved directions such that the three modified projections sum up to the initial function and
isotropic effects are included in the anisotropic indicators. Denoting the selection-based analogy to projection in the x; direc-
tion by the element-wise operator Si! we obtain the anisotropic error indicator 7y by

K

0 =R (S @ -2)), (39)

nZ and #}? are obtained correspondingly. Note that nY + 1> + 1} =17, as defined in (34) due to the fact that
SN -+ Se@T )+ ST -2 =@ - 2).
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From an implementational point of view the transfer of the elemental adjoint solution vector to a hierarchic basis, the
selection operation and the transfer back to whatever basis is used in the remaining computation can be performed by a sin-
gle matrix-vector product with a matrix that does not depend on the element under consideration as all operations are done
on the reference element. Thus the cost of evaluating these indicators is negligible. Furthermore, the selection operators
SYi, i=1,2,3, can easily be extended to spaces of complete polynomials instead of tensor product polynomials. In contrast
to that a projection or even the direct anisotropic reconstruction technique is not readily available as it is already difficult to
define anisotropic versions of such spaces.

A general advantage of this direct anisotropic error estimation approach is the fact that no threshold is required to dis-
tinguish strong and weak anisotropies, each single refinement direction is simply treated independently. Additionally, as the
adjoint solution provides a suitable weighting of the components no special treatment is required for vector-valued solution
functions.

To obtain optimal efficiency of the adaptive algorithm the fraction of refinements to be performed in one adaptation cycle
w.r.t. the total number of possible refinements should be reduced compared to the value used for isotropic refinement.
Depending on the strength of anisotropic features values between 10% and 15% provide good results in our experience.

9. Numerical examples

In this section we demonstrate the performance of the proposed error estimation and adaptation algorithms for two lam-
inar three-dimensional test cases. In all subsequent computations the flow solutions are computed with p = 1, the adjoint
solutions are computed with p = 2, the penalty constant is chosen as Cip = 30, cf. (9), and the Vijayasundaram numerical flux
function, see [31], is used. The flow problems are solved with the fully implicit Newton algorithm. The linear problems aris-
ing in each Newton step as well as the linear adjoint problems are solved with an ILU preconditioned GMRES algorithm. We
note that the number of elements in a mesh growths significantly with the dimension and the number of unknowns per ele-
ment increases rapidly with both dimension and polynomial degree. Thus, this approach is not applicable to large-scale com-
putations due to its memory requirements. Current and future research which is beyond the scope of this work is dedicated
to memory-lean flow and adjoint solvers.

9.1. Some remarks on local element subdivision

The local element subdivision approach used in our work and thus in the presented numerical examples is substantially
different from the remeshing approach presented elsewhere, especially in the area of anisotropic mesh refinement. Although
the focus of this work is not a thorough comparison of those approaches some remarks are in order to interpret the following
results. Using a solution-adaptive remeshing the new mesh has only little in common with the initial one: aspect ratios, ori-
entations and local node densities can be completely different without even modifying the total number of elements. This is
substantially different for element subdivision: only a global change in the number of elements can produce a locally mod-
ified node density. Element orientation stays the same on refined meshes and so does the aspect ratio, except in the aniso-
tropic case where it can be increased or decreased by a factor of two in each adaptation cycle. The latter approach guarantees
that a new mesh can be generated, whereas a remeshing process might fail. However, recent improvements in mesh gener-
ation software as well as the consideration of local node insertion and mesh optimization instead of global remeshing have
made the remeshing process quite robust. Thus, both approaches are quite reliable in practice.

Due to this difference our initial meshes are not isotropic and homogeneous but somehow “appropriate” to the case at
hand. We believe that there is substantial experience in creating such meshes for compressible flows and that this should
be exploited. Thus, simply increasing the node density globally on these meshes is already quite efficient to reduce the error.
We target providing still some improvement. The examples below show that the isotropic algorithm - which still features
anisotropic elements - does a good job at that. In addition to that, the anisotropic refinement can further reduce the required
effort. The resulting reduction might not seem huge, but it is achieved in comparison with realistic alternatives. Comparing
to intentionally bad choices might yield larger improvements but is not particularly meaningful.

9.2. Laminar flow around a streamlined body

First, we consider a streamlined three-dimensional body based on a 10% thick airfoil with boundaries constructed by a
surface of revolution, see Fig. 2. It consists of an elliptical leading edge and straight lines. The flow is considered at laminar
conditions with inflow Mach number equal to 0.5, at an angle of attack « = 1°, and Reynolds number Re = 5000 with adiabatic
no-slip wall boundary condition imposed. The geometry and the flow is relatively simple. In fact, this test case has been de-
fined in the EU project ADIGMA [24] to enable convergence studies. A reference drag coefficient value of C' = 0.06317 has
been obtained by extrapolation of results from computations with higher order schemes on a series of finer meshes.

We note that in all subsequent computations the boundary of the curved body is approximated using piecewise bi-qua-
dratic polynomials where the additional points required for defining these polynomials are obtained from a CAD represen-
tation of the geometry. Similarly, also the new points on the boundary required during local mesh refinement near the body
are taken from the CAD representation.
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Fig. 2. Streamlined body: Initial coarse mesh on the body surface and the symmetry plane. The symmetry plane coloring is based on the Mach number
distribution computed on a fine mesh.

The target of following computations will be to efficiently approximate the drag coefficient on a sequence of locally re-
fined meshes. To this end, we perform the error estimation algorithm described in Section 5 on locally refined meshes
adapted using the adjoint-based indicators (34) where the adjoint problem (24) is connected to the drag coefficient (20).
The first sequence of locally refined meshes is based on isotropic mesh refinement, i.e. upon refinement each hexahedral ele-
ment is isotropically subdivided into eight hexahedral subelements. In Table 1 we collect the number of elements, the num-
ber of degrees of freedom (DoFs) of u, € V}, the “true” error J(u) — J(u,) = C5' — C4 in the drag coefficient, the estimated
error £ = 3., Mx, (33), and the quotient 0 = £/(J(u) — J(uy)) of the estimated and the true error which is also called the
effectivity index. First of all, we see that on all meshes the sign of the error is predicted correctly. On the coarsest three
meshes the error estimates are not particular accurate indicated by an effectivity index 0 in the range of [0.6,2.7]. However,
as the mesh is refined the effectivity index 6 converges to one corresponding to error estimates being very close to the true
errors.

Table 2 collects the corresponding data on a sequence of an isotropically refined meshes. Here, on each element depicted
for local refinement by the adjoint-based indicators the anisotropic jump indicator (35) is used to determine which of the
seven different refinement cases shown in Fig. 1 are applied. Here, we see that the error estimation behaves very similar
to the one described for the sequence of the isotropically refined meshes in Table 1, i.e. the effectivity of the error estimation
does not deteriorate on anisotropically refined meshes.

Finally, Table 3 collects the data obtained through application of the anisotropic adjoint-based error estimate (39). The
results are again quite similar, also on this sequence of meshes the effectivity index is close to one after some refinement
cycles, where a value larger than 0.9 indicates that the remaining part of the error which is not estimated is more than
an order of magnitude smaller than the original error.

Table 1
Streamlined body: adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of isotropically refined meshes.
# el # DoFs CF =@y & 0
768 30,720 —9.877e—04 —6.548e—04 0.66
1853 74,120 1.731e-03 4.690e—-03 271
4744 189,760 —8.159e—04 —5.146e—04 0.63
12,304 492,160 —5.067e—04 —4.732e—04 0.93
32,282 1,291,280 —2.885e—04 —2.743e-04 0.95
81,688 3,267,520 —1.123e-04 —1.062e—04 0.95
Table 2

Streamlined body: adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of anisotropically refined meshes based on the jump
indicator.

#el # DoFs =@y & 0
768 30,720 —9.877e—04 —6.548e—04 0.66
1366 54,640 1.075e-03 4.096e—03 3.81
2700 108,000 —8.771e—04 —5.759e—04 0.66
5518 220,720 —5.446e—04 —5.067e—04 0.93
11,483 459,320 —3.434e-04 —3.261e—04 0.95

23,773 950,920 —1.946e—-04 —1.868e—04 0.96
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Table 3
Streamlined body: adaptive algorithm for the accurate approximation of the drag coefficient on a sequence of anisotropically refined meshes based on the
anisotropic adjoint-based error estimate.

# el. # DoFs G =y £ 0
768 30,720 —9.877e—04 —6.548e—04 0.66
1517 60,680 1.719e-03 4.681e—03 2.72
2768 110,720 —7.745e—04 —4.724e—04 0.61
5073 202,920 —4.742e—04 —4.364e—04 0.92
9444 377,760 —2.479e—04 —2.310e—04 0.93
17,329 693,160 —1.362e—04 —1.284e—-04 0.94
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Fig. 3. Streamlined body: convergence of the error in the drag coefficients J(u,) for global in comparison to adjgint-based isotropic and adjoint-based
anisotropic mesh refinement algorithms. Additionally, (b) shows the errors of the enhanced drag coefficients J(u,) = J(u,) + £ for the adjoint-based
isotropic and anisotropic mesh refinement.

Fig. 3(a) plots the error in the drag coefficient \Cfff — Cq4| against the number of elements for a sequence of globally refined
meshes, the sequence of adjoint-based isotropic refined meshes, see Table 1, and the sequences of adjoint-based anisotropic
refined meshes, see Tables 2 and 3. Comparing the histories of global and adjoint-based isotropic refinement we see in Fig. 3
that for this test case the adjoint-based refinement leads to meshes with a factor of about 5 less elements for a specific accu-
racy in the drag coefficient as compared to global refinement. Moreover, we see that compared to the isotropic adjoint-based
mesh refinement there is another factor of about 2 in the mesh sizes required for a specific accuracy for the anisotropic
refinement based on the jump indicator and a factor of approximately 4 for the anisotropic refinement based directly on
the anisotropic error estimate.

A comparison of the resulting adapted meshes is given in Fig. 4. As anisotropic features are not particularly strong and the
initial mesh already shows some anisotropy the overall effect of anisotropic refinement seems rather weak. However, we
note that in some places the initial aspect ratio is further increased in the anisotropic case, mainly in the boundary layer
mesh which can be seen in the symmetry plane. On the other hand, the stretching of some cells along the body with small
edge length orthogonal to the flow is too pronounced in the initial mesh. During isotropic refinement this aspect ratio is
inherited to all child elements. The anisotropic refinement algorithm can modify aspect ratios, however, and it does so.
For some elements this yields a reduced aspect ratio in order to create the mesh best fitted to the (quite isotropic) problem
at hand.

The error estimates in Tables 1-3 can be used to enhance the computed drag coefficients J(u,)=Cy as follows:
J(uy) == J(uy,) + £ If the error estimation is reliable such enhanced target quantities can be expected to be significantly more
accurate than the original values J(uy). This is confirmed in Fig. 3(b) which repeats Fig. 3(a) in a different scale and addition-
ally shows the histories of the errors of the enhanced drag coefficients J(uy,). In fact, from the third mesh onwards the en-
hanced drag coefficients are much closer to the reference value. The large vertical distance in the convergence plot is a
graphical interpretation of an effectivity index close to one.

9.3. Laminar flow around a delta wing

As a second test case we consider a laminar flow around a delta wing. The delta wing has a sloped and sharp leading edge
and a blunt trailing edge. A similar case has previously been considered in [22]. The geometry of the delta wing can be seen
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(a) (b)

Fig. 5. Laminar delta wing: (a) initial surface mesh: top, bottom and side view of the half delta wing with straight leading edges, (b) solution plot showing
streamlines and a Mach number isosurface over the left half of the wing as well as Mach number slices over the right half.

from the initial surface mesh in Fig. 5(a). The delta wing is considered at laminar conditions with inflow Mach number equal
to 0.3, at an angle of attack « = 12.5°, and Reynolds number Re = 4000 with isothermal no-slip wall boundary condition im-
posed on the wing geometry. This test case has been defined in the EU project ADIGMA [24]. As the flow passes the leading
edge it rolls up, creates a vortex and a secondary vortex. The resulting vortex system remains over long distances behind the
wing, see Fig. 5(b).

By performing higher order computations on a series of finer meshes and extrapolating the results the following reference
values of the force coefficients have been obtained: C;f = 0.1658 and C" = 0.347.

In the following we will compare the performance in accurately approximating the drag and lift coefficients when using
adjoint-based mesh refinement in comparison to residual-based and to global mesh refinement. Additionally, for the local
mesh refinement strategies we will compare isotropic against anisotropic mesh refinement.

Let us first consider the drag coefficient. Performing the error estimation and adjoint-based mesh refinement algorithm
with the adjoint problem connected to the drag coefficient we collect the data of the sequence of isotropically refined meshes
in Table 4. Here we see that already on the coarse meshes the error estimation is quite accurate and it improves as the mesh
is refined. A similar behavior we see in Table 4 for anisotropic mesh refinement based on the jump indicator and also for
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Table 4
Laminar delta wing: adaptive algorithms for the accurate approximation of the drag coefficient on sequences of isotropically and anisotropically refined
meshes.

Adaptive algorithm # el # DoFs =@y & 0
Isotropic 3264 130,560 —1.202e-02 —8.808e—-03 0.73
8549 341,960 —6.772e-03 —5.352e-03 0.79
22,885 915,400 —3.968e—-03 —3.163e-03 0.80
61,868 2,474,720 —2.221e-03 —1.925e-03 0.87
Anisotropic jump indicator 3264 130,560 —1.202e-02 —8.808e-03 0.73
6600 264,000 —7.398e—-03 —5.931e-03 0.80
14,215 568,600 —3.895e-03 —3.160e—-03 0.81
32,621 1,304,840 —2.247e-03 —1.909e-03 0.85
Anisotropic error estimate 3264 130,560 —1.202e-02 —8.808e—-03 0.73
4866 194,640 —7.366e—03 —5.409e-03 0.73
7622 304,880 —4.199e-03 —3.271e-03 0.78
12,347 493,880 —2.381e-03 —2.039e-03 0.86
20,005 800,200 —1.425e-03 —1.309e-03 0.92

anisotropic refinement based on the anisotropic error estimate. The efficiency of the error estimation does not notable de-
grade on anisotropically refined meshes.

Fig. 6(a) plots the error in the drag coefficient \C{ff — Cq4/ against the number of elements for various refinement strategies:
global mesh refinement, residual-based isotropic and anisotropic mesh refinement as well as adjoint-based isotropic mesh
refinement and the two anisotropic variants. We notice that drag coefficients of a specific accuracy are obtained with less
elements for residual-based mesh refinement than for global mesh refinement where this advantage increases for increasing
accuracy requirements. Furthermore, there is a significant decrease of the number of elements required for a specific accu-
racy when comparing adjoint-based against residual-based refinement. Additionally, in case of adjoint-based mesh refine-
ment Fig. 6(a) plots the errors of the enhanced drag coefficients J(u,) := J(u;,) + £&. We note that already on the coarsest
mesh the enhanced drag coefficient is almost as accurate as the drag coefficients on the finest adjoint-based refined mesh.
Furthermore, we see that anisotropic mesh refinement always performs better than isotropic mesh refinement. In fact, aniso-
tropic adjoint-based refinement based on the jump indicator requires about half the number of elements for almost the same
accuracy than the corresponding isotropic refinement. For the anisotropic adjoint-based error estimate this gain increases
further and the number of elements can be reduced by a factor of approximately five compared to the isotropic case. Overall,
compared to a global mesh refinement approach the number of elements and thus degrees of freedom required to obtain the
accuracy of the final globally refined mesh can be reduced by two orders of magnitude using the best available adaptive
strategy. Using the enhanced drag coefficient improves the accuracy by another order of magnitude. This accumulates to
an impressive gain.

Finally, we consider the lift coefficient. Table 5 collects the data of the sequences of isotropically and anisotropically ad-
joint-based refined meshes. For all three algorithms we see a behavior similar to that described for the drag coefficient,
although the efficiency of the error estimation is slightly reduced in this case. Nevertheless, the adaptive algorithm based
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Fig. 6. Laminar delta wing: convergence of the error in the (a) drag and (b) lift coefficients J(u,) for global in comparison to residual-based (isotropic and
anisotropic) and to adjoint-based (isotropic and anisotropic) mesh refinement. Additionally, the errors of the enhanced force coefficients J(uy,) = J(u,) + &
on the sequences of adjoint-based mesh refinement are given.
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on those estimates still performs very well. Fig. 6(b) plots the errors for global, residual-based, adjoint-based, isotropic and
anisotropic refinement and the errors of the enhanced lift coefficients. Here, again we see a behavior very similar to that de-
scribed for the drag coefficient above.

Adapted meshes for six of the different combinations of error indicators and isotropic or anisotropic refinement are pre-
sented in Fig. 7. In order to present meshes for which the accuracy of the relevant target functional is comparable all plots are
given for the last data point in the errors plots in Fig. 6, except in the case of the anisotropic error estimate for which the
mesh is shown for the point prior to the last one. The outstanding effect is clearly the resolution of the vortex in the cut-plane
behind the wing for the residual-based refinement indicator and the corresponding lack of resolution in this area in the case
of goal-oriented refinement. It is quite obvious that the global flow field is better resolved using the first type of indicator
whereas the resolution of this prominent vortex is not of much influence on the target functional values, as both the pressure
at the wall and the skin friction are only weakly dependent on the downstream vortex evolution. Thus, investing more in the
near-wall refinement the adjoint-based refinement indicators are capable of creating more efficient meshes for the approx-
imation of the given target functional. We note, that the resulting refinement for the lift and drag coefficients has clear sim-
ilarities, but that there are differences in the details of the created meshes. Furthermore, the effect of the anisotropic
indicator can also be seen in the adapted meshes, not only in the plots and tables. Finally, we note that the refinement of
the vortex footprint on the wing is particularly pronounced in the anisotropic residual-based case.

10. Conclusion and outlook

The numerical examples demonstrate that the SIPG discretization is capable of producing accurate results for 3d laminar
flows. Furthermore, the applicability of the proposed local mesh refinement algorithm has been demonstrated. Starting from
very coarse meshes the relevant features of the flow field are resolved on subsequent refined meshes, resulting in an accurate
and efficient prediction of target functionals like aerodynamic force coefficients.

Both residual-based and adjoint-based adaptation are beneficial for improving the efficiency upon global mesh refine-
ment. For the most efficient approximation of a specific target functional the goal-oriented strategy is the most effective
one, especially as the availability of a global error estimate is a valuable additional feature and can be exploited to improve
the computed target functional value. If, however, the goal of the computation is the global field solution of the flow under
consideration, it is advisable to use a residual-based error estimation and refinement algorithm, instead.

The proposed anisotropic jump indicator is computationally very cheap, but is nevertheless able to achieve a perceptible
additional reduction in the number of elements required to obtain a given accuracy. The “partitioned approach” of separating
the local error estimation from the local anisotropy detection makes this indicator immediately available in both residual-
based and goal-oriented refinement strategies. In the case of goal-oriented refinement the anisotropic error estimation pro-
vides even better results at virtually no cost overhead. Both versions are immediately applicable to higher order and variable
order hp-discretizations. Our current focus is on boundary layers in which anisotropic features are aligned with the mesh. For
shock-dominated flows those features might be oblique to the mesh and an efficient anisotropic mesh resolution cannot be
achieved by selectively refining edges. In that case local node movement might be considered to create a properly aligned
mesh.

A remaining problem of the current implementation is the restriction to purely hexahedral meshes. In practice, only
(block-)structured meshes can fulfill this requirement. It is complicated to create such meshes for complex geometries
and in particular coarse meshes often suffer from distorted elements. Thus it would be advisable to extend the discretization
to hybrid meshes consisting of tetrahedra, prisms, pyramids and hexahedra.

The current flow and adjoint solvers rely on the assembly and storage of the full Jacobian matrix which is prohibitive for
large-scale applications. Future research is dedicated to replace these solvers by memory-lean versions. In particular, we will
consider a concurrent iteration of the primal and adjoint solutions within a p-multigrid method with line-implicit
smoothing.

Most aerodynamic flows of practical interest are turbulent and transonic, thus the physical modeling should be extended
to both turbulence modeling via additional transport equations and a reliable shock capturing technique. A reliable and ro-
bust extension of the discretization to these aspects will require a significant amount of future research.
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